
MASTER THESIS

Jiřı́ Setnička

Comparison of Top trees
implementations

Department of Theoretical Computer Science and Mathematical Logic

Supervisor of the master thesis: Mgr. Vladan Majerech, Dr.
Study programme: Computer Science

Study branch: Discrete Models and Algorithms

Prague 2018

I declare that I carried out this master thesis independently, and only with the
cited sources, literature and other professional sources.

I understand that my work relates to the rights and obligations under the Act
No. 121/2000 Sb., the Copyright Act, as amended, in particular the fact that the
Charles University has the right to conclude a license agreement on the use of
this work as a school work pursuant to Section 60 subsection 1 of the Copyright
Act.

In date signature of the author

i

Title: Comparison of Top trees implementations

Author: Jiřı́ Setnička

Department: Department of Theoretical Computer Science and Mathematical
Logic

Supervisor: Mgr. Vladan Majerech, Dr., Department of Theoretical Computer
Science and Mathematical Logic

Abstract: Definition and description of Top trees and introduction of problems
solvable by them including problem of edge 2-connectivity. Definition and de-
scription of Topology trees used as one of the drivers for Top trees. After the
initial descriptions the two top trees implementations are introduced: one based
on self adjusting trees, second based on topology trees. Comparison of these
implementations is done by two experiments. Measurements are discussed in
conclusion – results corresponds with initial estimates but with different multi-
plicative constant than expected.

Keywords: Top Trees, Complexity, Implementation

ii

I would like to thank my supervisor Vladan Majerech for bringing such interesting
topic, although the topic proved to be more difficult and more challenging than
I thought. Also I would like to thank my family and friends for patience with me
during writing this thesis.

iii

Contents

Introduction 4

1 Top Trees 5
1.1 Definition . 5
1.2 Clusters . 5

1.2.1 Clusters model . 7
1.2.2 Extended clusters model 7

1.3 User defined functions . 8
1.3.1 Create . 8
1.3.2 Destroy . 9
1.3.3 Join . 9
1.3.4 Split . 9
1.3.5 Choose . 9

1.4 Top Trees operations . 9
1.4.1 Expose . 11
1.4.2 Restore . 11
1.4.3 Cut . 11
1.4.4 Link . 11
1.4.5 Search . 11

2 Topology Trees 12
2.1 User interaction . 12
2.2 Definition and properties . 12

2.2.1 Topology clusters and clusterization 12
2.2.2 Topology tree . 13
2.2.3 Height of a topology tree 13

2.3 Updates – internal cuts and links 15
2.3.1 Update process . 15

2.4 Ternarization of a tree . 16
2.4.1 Ternarization during Cut operation 17
2.4.2 Ternarization during Link operation 17

3 Examples of problems and user functions 19
3.1 Finding distance between two vertices 19
3.2 Maximum edge weight between given vertices with interval update 19
3.3 Edge 2-connectivity . 20

3.3.1 Basic principle . 20
3.3.2 Brief overview of details 21
3.3.3 Operations . 21

1

3.3.4 Speed up query by disabling expensive updates 22
3.4 Vertex 2-connectivity . 22

4 Implementation and usage 23
4.1 Interface of the Top Trees structure 23

4.1.1 User data structures . 23
4.1.2 User functions . 24
4.1.3 Choosing top tree implementation and initialization 25
4.1.4 User methods . 26

4.2 Debug and Graphviz output . 26
4.2.1 Enabling debug and Graphviz output 27

5 Implementation of Top Trees using self adjusting trees 28
5.1 Construction . 28
5.2 Expose . 29

5.2.1 Splaying . 29
5.2.2 Splicing . 30
5.2.3 Soft expose . 31
5.2.4 Hard expose . 33

5.3 Cut . 34
5.4 Link . 35

6 Implementation of Top Trees using Topology Trees 36
6.1 Mapping top trees clusters . 36

6.1.1 Subvertices and subvertice edges from the Top trees per-
spective . 37

6.1.2 Associated top clusters . 37
6.2 Joins and Splits . 37

6.2.1 Joining . 38
6.2.2 Splitting . 38

6.3 Expose . 39
6.3.1 Splitting during expose . 39
6.3.2 Chain joining . 41
6.3.3 Restore . 42
6.3.4 Keeping original clusters during Expose 42

7 Experiments 43
7.1 Experiments strategy . 43
7.2 Maximum edge weight experiment 44
7.3 Edge 2-connectivity experiment 45

7.3.1 Stored data . 45
7.3.2 Generating initial graph and choosing number of edges . . 45
7.3.3 Test scenarios . 46

8 Results 47
8.1 Maximum edge weight experiment results 47
8.2 Edge 2-connectivity experiment results 49

Conclusion 52

2

Bibliography 53

List of Figures 54

Attachments 55

3

Introduction
Main aim of this thesis is to provide two different Top Trees implementations and
to compare them in different situations. Both implementation were written from
scratch in C++ to provide comparable results.

Top Trees are not so well known data structure which could be used to main-
tain information of some dynamically updated collection of trees. User of this
data structure defines four basic operations, which are used internally when Top
Trees structure is changing. When there occurs some cutting or joining on under-
lying trees the structure updates internally stored information using these user
functions.

This data structure could be used for example to dynamically maintain diam-
eter, center or median (minimizing weighted distance from all other vertices) of
given tree in time O(log N) (where N denotes the number of vertices).

Because it is essential to understand how the Top Trees structure works, some
basic principles of the Top Trees structure are introduced in the Chapter 1 and
some basic principles of Topology trees used in one of the implementations are
introduced in the Chapter 2. Some examples of problems, which could Top Trees
handle quickly, are listed in Chapter 3 of this thesis.

Basic usage of both implementations and some technical details are the con-
tents of the Chapter 4. Chapter 5 and Chapter 6 describes details of both imple-
mentations.

First implementation of the Top Trees structure is based on article Self-
Adjusting Top Trees [1] by Tarjan and Werneck. This implementation promises
quick amortized time per operation (with small constant), but it does not guar-
antee these times in worst case. This implementation is described in Chapter 5
of this thesis.

Second implementation is based on article Maintaining Information in Fully-
Dynamic Trees with Top Trees [2] by Alstrup, Holm, Lichtenberg and Thorup
and uses Topology trees introduced by Frederickson in [3]. This implementa-
tion promises time O(log N) in worst-case but with much larger multiplicative
constant. This implementation is described in Chapter 6 of this thesis.

To compare both implementations it was necessary to perform some experi-
ments on different problems on different graphs with different sizes. Experiments
were performed on problem of maximum edge weight in tree with interval updates
(described in section 3.2) and on problem of edge 2-connectivity (described in sec-
tion 3.3. Details of these experiments and their setup are described in Chapter 7.

We expected that the first implementations would have smaller multiplicative
constant than the second one. This expectation turned out to be right and multi-
plicative constant for both implementations was measured in Chapter 8 together
with some results for turning out unnecessary updates during some operation in
the second implementation.

4

1. Top Trees
Top Trees are data structure intended to maintain informations of underlying
dynamically updated forest. They were introduced by Alstrup, Holm, Lichtenberg
and Thorup in Minimizing Diamaters of Dynamic Trees [4] in 1997 as variant of
the Topology Trees and they were extended by the same authors in Maintaining
Information in Fully-Dynamic Trees with Top Trees [2] in 2003.

1.1 Definition
Top Trees structure acts as driver for underlying forest. It represents underlying
trees as collection of generalized edges called clusters. Each Cluster represents
some subtree in the underlying forest. Only some of them called root clusters
(which represents whole trees of the underlying forest) could be directly accessed
by the user.

User defines format of the data stored in these clusters and four basic user
functions Create, Destroy, Join and Split used to manipulate with clusters
data. Above that user could define fifth function Choose which is needed for
non-local search but it is not needed for basic usage.

Then user controls the Top Trees structure by using operations Cut(u, v),
Link(u, v) and Expose(u, v). Last of them makes cluster representing the path
between vertices u and v a root cluster (because root clusters are the only clusters
of the top tree, which could be accessed by the user). The Top Trees structure
dynamically updates stored data in clusters by using user defined functions.

Notation: We will use capitalize form to denote situations where we refer di-
rectly to the defined user functions or to the top trees operations called by users.
When referring to the generic process of joining, splitting or to the internal pro-
cedures related to these processes we will use normal font style.

1.2 Clusters
As has been said Clusters are generalized edges. Each cluster has two boundary
vertices and represents part of the underlying forest between these vertices. We
denote two clusters as connected if they are edge disjoint and they share one
boundary vertex.

A Clusterization is division of the underlying forest into clusters such that each
edge is in exactly one cluster. As we mentioned above roots clusters are the ones
that represent whole trees in the underlying forest (all edges of their underlying
tree are contracted inside and there are no outgoing edges – this means that in
a clusterization both their boundary vertices are not connected with any other
cluster).

Another special clusters are leaf clusters. We denote a cluster as a leaf cluster
in some clusterization if only one of its boundary vertices is connected to another
cluster.

Clusters in the Top Trees structure are organized into binary trees (called top

5

trees) where each leaf represents one edge of the underlying forest and each inner
vertex represents contraction of its children. More about this structure will be
discussed later in the Cluster model subsection. Before that we need to introduce
types of clusters. There are three types of clusters:

• Base cluster – represents one edge of the underlying forest (and each edge
of the underlying forest has exactly one base cluster, it is 1:1 mapping),
boundary vertices are endpoints of the edge. This cluster could appear
only as leaf in the Top Trees structure.

• Rake cluster – represents one way how to contract two clusters with one
common boundary vertex. Let’s have two clusters C1(u, v) and C2(v, w)
next to each other around common boundary vertex v (and let the C1 be
the left one of them in some topological order given for example by indices
of the edges or by some planar embedding).
If the left cluster (C1) is a leaf cluster then we can construct left rake cluster
by raking the left cluster (C1) on the right one (C2). The resulting cluster
would have the same boundary vertices as the cluster C2.
If the right cluster (C2) is a leaf cluster then we can, similarly to the previous
case, construct right rake cluster by raking the right cluster (C2) on the left
one (C1). The resulting cluster would have the same boundary vertices as
the cluster C1.

v

u w

C1 C2

v

w

C
Left rake

v

u w

C1 C2

v

u

C
Right rake

Figure 1.1: Left and right rake clusters

• Compress cluster – represents other contraction of the two clusters with
one common boundary vertex v into one cluster by attaching first cluster
after the other. Right before compressing the common vertex v must have
degree (number of incident clusters) exactly two. If there are other clusters
attached to the same common boundary vertex they must be firstly raked
onto one of the compressed clusters.
If boundary vertices of the cluster C1 were (u, v) and boundary vertices of
the cluster C2 were (v, w), the cluster C = compress(C1, C2) would have
boundary vertices (u, w) (and we will call it compress cluster of vertex v
and the operation compressing around vertex v). This cluster also in some
way represents the vertex v and we will use this cluster as handle of the v.

u
v

w
C1 C1 Compress

u w

C

Figure 1.2: Compress cluster

6

1.2.1 Clusters model
Clusters in the Top Trees structure are organized into binary trees. Leaves of
these trees (Base clusters) represent edges of the underlying trees and each inner
vertex represents contraction of two child clusters into one.

Compress and rake clusters have each of them two children, base clusters are
childless. Each cluster represent subtree of the underlying forest. By sequence of
clusters contractions we could represent each underlying tree as one root cluster .
This whole binary tree of cluster contractions leading to the one root cluster is
called top tree.

Compress clusters are used to represent paths in the underlying tree – each
path could be compressed into one compress tree consisting only of compress clus-
ters. If there are branches separating from this path, they are firstly recursively
represented as single clusters (rake trees) and then they are raked onto clusters
in the path.

Because there are M base clusters for an underlying tree with M edges and
each inner vertex of the corresponding top tree joins two adjacent clusters into
one, there will be M − 1 inner clusters for representing this underlying tree.

Underlying tree could have (and usually have) many different divisions into
paths and so the underlying tree have many different representations. Crucial
part of the top trees structure is to maintain this representation in some nice
form during updates.

a

b

c

d

e

f

g

a[b]c

a, b

b[e]d

b, e e, d

e, g

e, f e, g

e, d

a, b

b, c

Figure 1.3: Original tree and corresponding top tree (rake clusters are grey)

1.2.2 Extended clusters model
Tarjan and Werneck in [1] suggested that in some cases it may be useful to modify
structure of the clusters and they introduced foster children for compress clusters.
In their suggestion a compress cluster could have up to four descendants – two
normal children and up to two foster children.

Normal children of a compress cluster are clusters from the compressed path
and foster children are clusters originating from the separating branches. In
normal cluster model they would be raked onto clusters from path and the path
would be compression of these rake clusters.

In this extended model the clusters originating from the separating branches

7

are firstly combined in rake trees – there are maximally two rake trees around
each path vertex, one of them is raked from branches on one side of the path
and the second one is raked from branches on the other side of the path. And
these rake trees are connected as left and right foster child of the compress cluster
constructed from this part of the path.

a
b

c
d

BL

BR

CL

CR

Figure 1.4: Rake trees (triangles) around a path, they can be connected as foster
children to compress clusters

During computation (Join and Split operations) there is need to use virtual
rake clusters, but it takes only O(1) time per one compress cluster. We will
discuss it later in the first implementation for which this extended model is used.

a

b

c

d

e

f

g

a[b]c

b[e]d

b, e e, g

e, f e, g

e, d

a, b b, c

Figure 1.5: Original tree and corresponding top tree with extended clusters model
(foster children are connected by dotted edges)

1.3 User defined functions
There are four basic functions to manipulate the clusters data which have to
be implemented by user of the Top Trees structure. Then user uses public Top
Trees structure operations and these user functions are used internally when
constructing, destroying or reorganizing clusters.

If user wants to use the Search operation, he has to implement fifth user
function Choose to traverse around the path by choosing children.

Examples of the functions and related problems are given in the Chapter 3.

1.3.1 Create
This function is called when new base cluster is created. It gets reference to
the underlying edge and to the newly created base cluster, populates base clus-
ter’s data based on the underlying edge and runs other user defined operations
according to logic of given problem.

8

1.3.2 Destroy
Opposite of the Create function. This function is called just before deleting
base cluster. It gets reference to the underlying edge and to the base cluster
which would be destroyed and it could perform some end-of-life operations (like
saving computed data from the cluster).

1.3.3 Join
This function is called during contraction of two clusters into one (compress or
rake) cluster. In the general view it should populate parent cluster with the data
aggregated from contracted child clusters or perform other join-related operations
according to logic of given problem.

It gets references to both of the contracted clusters and to the newly created
parent cluster with information about their boundary vertices. From boundary
vertices of the parent and both children can be clearly determined if it is compress
or rake cluster (and which one of the children in rake cluster is raked onto the
another one) – user may or may not use this information according to the logic
of given problem.

1.3.4 Split
Opposite of the Join function. It is called just before removing connection among
parent cluster and its children. This function gets references to the parent cluster
and both of its children with information about their boundary vertices. It should
distribute data from the parent into children – notice that no data could be stored
in the parent cluster after the Split operation (because the parent cluster will be
deleted after this operation).

The Join and Split functions are frequently called during reorganization of
the Top trees structure – common pattern is to split everything around changed
path in the top-down manner, reorganize the structure and then join everything
in the bottom-up manner.

1.3.5 Choose
This operation for given root cluster selects one of its child clusters. It gets
reference to the cluster and its children and returns reference to one of them. It
is used internally by the Search operation.

1.4 Top Trees operations
These are the only operations which could user use to manipulate the Top Trees
structure. In addition to that, user could access root clusters and read informa-
tions from them.

9

Normalized shape

Depending on implementation there could be defined a normalized shape of the
Top Trees structure. All operations expect the Top Trees structure in this nor-
malized shape.

Some operations may corrupt this normalized shape and in that case the
correct shape must be restored prior to the next operation. For both following
implementations an example of such operation is the Expose operation (see
implementation details).

We cannot restore the correct shape right after finishing the operation because
user may need to interact with the Top Trees structure in this corrupted state.
Therefore we have to record that the structure is in corrupted state and we have
to do check and eventually restoration at beginning of each operation. See the
following Restore operation for more details.

Handles

Following operations are defined for pair of vertices of the underlying forest, but
the Top Trees structure operates on (generalized) edges. We need to map these
vertices to clusters.

We want to choose clusters whose in some way represent operations with
vertices. Every cluster represents some path and for given vertex we want to
choose cluster which has this vertex in its path. Also we want that the chosen
cluster could be easily transformed around this vertex. This means that we want
cluster that has chosen vertex as its boundary vertex or common vertex (for
compress clusters).

To accomplish this mapping we define handle for each vertex of the underlying
forest in this way:

• Isolated vertex has no handle.

• If the vertex is a leaf of the underlying tree the handle for this vertex is the
topmost compress (or base) cluster having this vertex as one of its boundary
vertices (rake clusters cannot be handles).

• Root cluster is handle for its boundary vertices regardless of their degree in
the underlying tree.

• And finally if the vertex has degree at least two the compress cluster of
this vertex (compress cluster having this vertex as the common boundary
vertex) is the handle of this vertex.

One node could be handle for at most three vertices – two as endpoints and
one as common boundary vertex. To mark handle of a vertex v we will use
notation Nv.

With handles we could transform operations with vertices into operations with
clusters.

10

1.4.1 Expose
Expose is one of the most basic operations. Calling Expose(u, v) will result
in exposing the u . . . v path (if exists) in the root cluster, which the user could
modify.

Implementation of the expose slightly differs in the first and the second im-
plementation (first implementation uses splays and splices and the second one
does expose through several splits and joins), but result of both is the same root
cluster (but with possibly different decomposition to subclusters).

See details of both implementations for more information.

1.4.2 Restore
As we mentioned before we may need to keep the Top Trees structure in some
normalized shape. Purpose of this operation is to restore the structure to such
form. Because some operation may corrupt this normalized shape we call the
Restore operation at beginning of all other operations.

To allow the user to modify user functions (Split, Join, . . .) for each oper-
ation we will make the Restore callable by the user independently.

In one of the experiments we will use this functionality to turn off expensive
updates during the Expose operation for implementation with topology trees.
After finishing Expose we will Restore the structure back to the correct form
and before next operation we will turn the expensive updates back on.

1.4.3 Cut
Operation Cut(u, v) deletes edge between vertices u and v and reorganizes the
Top Trees structure to reflect this change. Precondition for this operation is that
u ̸= v and there exists edge (u, v).

Both implementations use different approaches, but the result is the same –
they remove the (u, v) edge and return roots of two new top trees.

1.4.4 Link
The Link operation is an opposite to the Cut operation. Calling Link(u, v) on
two disconnected vertices joins them by the new edge (u, v). Precondition for
this operation is that u and v are disconnected.

Both implementations use different approaches, but the result is the same –
both top trees are joined by the new edge (u, v) and the cluster of resulting top
tree is returned.

1.4.5 Search
When defined the Choose user function this operation could be used to find and
return specific base cluster. Search guided by Choose functions splits clusters
on the way from given root cluster to an edge cluster that was in all clusters
chosen by Choose (similar to binary search on a normal tree).

11

2. Topology Trees
The Topology Trees data structure introduced by Frederickson [3] is used as the
basic building block in the second implementation. We devote this chapter to
basic understanding of how this data structure works and what must be done to
use it in our case.

Basic idea of the Topology Trees is to divide a tree (or in general a forest)
with maximal degree of three into recursive clusters. Trees with higher degree
has to be firstly ternarized – their vertices have to be splitted. We will discuss
the ternarization later, let’s suppose we already have ternarized tree.

A collection of rooted binary trees (called topology trees) is built from these
recursive clusters, one for each tree in the original forest.

Cluster in topology tree is a set of at most two nodes (vertices of the original
tree or other topology tree clusters) with edge between them (but without edges
to neighbors) and with at most three neighbors, better definition will conclude
below. Nodes not connected by edge cannot be in common cluster, thus clusters
represents some contracted subtrees of the original tree.

2.1 User interaction
User of the topology trees could interact with them by using Cut and Link
operations like in the Top trees structure, but there is no Expose operation. To
use it as base for the Top trees structure we will have to implement Expose
differently.

Also note that clusters in topology trees are slightly different than clusters
in top trees. In top trees clusters are generalized edges (with two endpoints)
representing contracted subtree between two vertices, but clusters in topology
trees are generalized vertices (with at most three outgoing edges).

We will build the Top trees structure based on topology trees in the Chapter 6,
now let’s introduce details of topology trees.

Notation: Like in the first chapter we will use capitalize form of the Cut and
Link operations to denote that they are called directly by the user. Also we will
use terms internal cut and internal link to denote internal operations that works
on a ternarized tree.

2.2 Definition and properties

2.2.1 Topology clusters and clusterization
A cluster of order k is a set of k nodes connected by edges (there must be a path
from each to each). A clusterization of order k of graph is division of this graph
into clusters that:

• Each cluster has order at most k.

• Each vertex of the original graph is contained in exactly one cluster.

12

The Topology clusterization of a tree (with maximal degree 3) is a clusteriza-
tion of order 2 whose clusters (called topology clusters) must meet these condi-
tions:

1. Neighbors limit: Every topology cluster has degree (number of outgoing
edges to neighbors) at most 3.

2. Simple crossroads: Clusters with three neighbors must have order 1 (they
consist of only one vertex).

3. Minimality: There is no cluster that could be merged with its neighbor
without violation these rules.

Because of that there are only 8 types of valid topology clusters:

Cluster degree: 0 1 2 3

Figure 2.1: All 8 types of valid topology clusters

2.2.2 Topology tree
The topology tree is a rooted binary tree where each level of it represents some
topology clusterization of the original tree. On the lowest level each of the original
vertices is an independent basic cluster. These clusters are joined in the first level
of topology clusterization, resulting clusters are contracted and acts as nodes for
above level and so on.

Example of topology tree construction and yielding topology tree is on fol-
lowing figures 2.2 and 2.3.

Each inner cluster has at most two children on the level below (the clusters
from which is it contracted) and at most one parent (topology clusters without
parent are roots of topology trees). Among these tree edges each topology cluster
is connected with its neighbors on the same level – each topology cluster has at
most three outgoing edges.

2.2.3 Height of a topology tree
Frederickson in [3] proved that each level of topology clusterization has at most
5/6 clusters of the previous level. Number of clusters on the lowest level corre-
sponds to the number of vertices of the original tree (denote it as N) and at k-th
level there are at most N · (5/6)k clusters. Therefore the height of the topology
tree for tree with N vertices could be estimated as O(log N).

13

c-h

c-e1 g-h

c-b e1-e2 g-h

c

a-b e1-d

e2-f

g-h

a

b

c

d

e1

e2

f

g h

Figure 2.2: Example of the topology tree construction. On the bottom level there
is original underlying tree with ternarized vertex e (ternarization has no effect
on the construction, for more details see subsection Ternarization).

c-h

c-e2

c-b

c

c

a-b

a b

e1-e2

e1-d

e1 d

e2-f

e2 f

g-h

g-h

g-h

g h

Figure 2.3: Resulting topology tree from the previous construction.

14

2.3 Updates – internal cuts and links
In this section we will assume that we work on a ternarized tree, generic Cut
and Link operations will be discussed below in the ternarization section.

After a change in the underlying forest (adding or removing an edge) we
must update the whole topology trees structure – after link (adding edge) two
topology trees are joined into one and after cut (removing edge) one topology
tree is splitted into two topology trees.

This change has to be propagated on all levels of a topology tree and corre-
sponding topology clusters (and their neighbors) have to be updated. The main
idea is that this operation should do constant work on each level which leads to
the time O(log N) for each operation.

Update process was originally described by Frederickson in [3] but my imple-
mentation is based on process described in Martin Mareš’s master thesis [5] (in
Czech). The process is the same but it was described more clearly in the second
source.

2.3.1 Update process
Both link and cut starts by modifying the original forest which will break some
constraints in the lowest level of our topology trees. Whole update process goes
from the lowest level up and repairs broken constraints.

Update process work in phases (one phase for level in topology tree) and uses
three lists listed below:

• Delete list – clusters to be deleted, initially it is empty.

• Change list – clusters which are changed and needs recomputation, ini-
tially it contains basic clusters at endpoints of the added/removed edge.

• Abandon list – clusters which are (for some reason) without parent and
needs some, initially it is empty.

In each phase update process processes all clusters from all three lists and
prepares lists of clusters from above level for the next phase. When there are no
clusters to process it ends.

Firstly for all clusters from delete list: We delete this cluster (and disconnect
all outer edges) and if it is the only child of its parent we add parent to the delete
list for the next phase, otherwise we add the second child into current change list,
because we need to recompute its neighbors (and that transitively ensures that
parent would get into new change list).

Next for all clusters in change list: If they have sibling (the second child of
their parent) and they are connected with him by edge then everything is correct
– we only update their neighbors (based on its children neighbors) and add the
parent into next change list (we need to update parent’s neighbors too).

If cluster from change list has sibling but they are not connected by edge
(for example the initial state after cut operation) their parent is no longer a valid
cluster – therefore we add their parent into next delete list and move both clusters
into abandon list (because they are without valid parent).

15

And finally for all other clusters (rest of change list and abandon list) we do
this process:

• When cluster has no neighbors we found a new root cluster → we just save
it into list of root clusters.

• When cluster has three neighbors and one of the neighbors is single cluster
(cluster with only one neighbor) → we join them together under one parent,
resulting cluster would have two neighbors. Depending on parents of both
clusters there are several options:

– If one of the clusters has parent, we reuse it and we add this parent
into next changed list.

– If both clusters have parent, we choose one, reuse it (adding it into
next change list) and we add second one into next delete list.

– If both clusters were without parent we have to create a new one and
add this new parent into next abandon list.

• When cluster has three neighbors but no neighbor is single cluster → we
cannot join cluster with any of its neighbors, therefore we only ensure there
is parent of this cluster (if parent exists we add it into next change list,
otherwise we create it and add it into next abandon list).

• If cluster has degree (number of neighbors) at most 2 and it has neighbor
without sibling such that degree of cluster plus degree of this neighbor is at
most 4 → We join them together. The resulting parent cluster will have
degree 2 (because we encapsulate the common edge, which we count twice,
into parent cluster). Ensuring the parent cluster is similar as in the second
case. If there is no such neighbor we only ensure that parent of this cluster
exists (similar as in the third case).

This process takes O(1) per level and O(log N) for the whole topology tree.

2.4 Ternarization of a tree
One of the things we have to deal with when using Topology trees as an executive
layer for Top trees are degrees of vertices – the Top Trees structure have to work
on trees of any degree but Topology trees work only on trees with max degree 3.

We have to ternarize each vertex – turning vertex with higher degree into
chain of multiple vertices with degree 3 – and keep this ternarization during cuts
and joins.

Let’s have a vertex of degree D ≥ 4. It could be splitted into chain of multiple
vertices with maximal degree 3 by these simple steps:

• Create D−2 subvertices and set their superior vertex as the original vertex.

• Connect subvertices by edges (called subvertice edges) into one chain (first
and last vertex will have one edge used, inner will have two edges used)

16

• Disconnect neighbors from the original vertex and connect them to these
subvertices (there are exactly the right number of free neighbor slots).

Because the Cut and Link operations in the Top trees works with the original
vertices, we have to build some mapping on internal Topology trees cuts and link
operations.

2.4.1 Ternarization during Cut operation
Both endpoints of the Cut(u, v) could be processed independently. When cutting
on vertex with degree at most 3 nothing had to be done and we may simply call
internal cut operation.

When cutting on vertex which is splitted into several subvertices the operation
is more difficult. Firstly we need to find right subvertex which incidents with the
edge. This could be done easily by some list of pointers. After finding the right
subvertex and edge we call the internal cut on this edge, but this operation
decreases degree of this subvertex. According to situation we have to do several
repair steps:

• If this is inner subvertex of the subvertice chain: We remove it from the
chain, we need two internal cuts on edges to both neighbors and one internal
link to directly reconnect neighbors.

• If this is outer vertex of the subvertices chain and there is at least one inner
vertex of the chain (when degree of the original vertex was at least 5): We
“steal” one outer edge from the neighbor (which is an inner vertex of the
subvertice chain) by one internal cut and one internal link and then we
continue as in the first case by removing this inner vertex.

• If this is outer vertex of the subvertice chain and there is no inner vertex:
We have to join subvertices into the original vertex. We cut each edge to
neighbor and link it back to the original vertex. Finally we cut the edge
between both subvertices and delete these subvertices.
Because degree of the original vertex is 3 after this operation we do exactly
4 internal cuts and 3 internal links.

In each case we have to do only constant number of internal cuts and links.
All these inner operations work in the O(log N) time so the time complexity of
the whole Cut operation is O(log N) (but the multiplicative constant could be
really large).

2.4.2 Ternarization during Link operation
As in the Cut operation both endpoints of the Link(u, v) could be processed
independently. We firstly need to ensure that both endpoints have degree at
most 2. When linking such vertices we don’t need to do anything and we just
simply call internal link operation.

When linking vertex with degree 3 or more we need to split it into subvertices
(or add a new subvertex to the existing subvertices chain).

17

When degree of the vertex was exactly 3, it is not splitted yet and we have to
split it – as in the procedure above we create two subvertices, we link them by
one edge and then for all existing neighbors we cut them from the original vertex
and link them to one of the subvertices. One subvertex ends with degree only 2
and we use this subvertex as an endpoint for the main link operation.

Otherwise when vertex is already splitted into subvertices we have to create
a new subvertex and insert it into the subvertices chain. Easiest is to do cut
between the first and the second subvertex in the chain and then two links –
between the first and the new subvertex and between the new subvertex and the
second subvertex. Then we use the new subvertex as an endpoint for the main
link operation

In each case we have to do only constant number of inner cuts and links. All
these inner operations works in the O(log N) time so the time complexity of the
whole Link operation is O(log N) (but as in the Cut’s case the multiplicative
constant could be really large).

18

3. Examples of problems and
user functions
In this section there is a list of several problems which could be solved by Top
Trees with small time complexity.

3.1 Finding distance between two vertices
This problem was originally solved in A Data Structure for Dynamic Trees [6] by
Sleator and Tarjan in 1983 and then it was adapted for Top Trees by Alstrup,
Holm, Lichtenberg and Thorup in [2].

Theorem: Lets have dynamic collection of weighted trees with link and cut
operations. We could find length of the path between any two vertices (or find
that they are not connected) in O(log N) time.

Proof: We will maintain length of the cluster path in every cluster.

• Create creates cluster with length equivalent to the length of the under-
lying edge.

• Join of clusters C1 and C2 into C depends on the type of the C:

– If C is a compress cluster of C1 and C2: Set length of the C’s path as
sum of the lengths of C1 and C2.

– If C is a rake cluster and C1 is raked onto C2: Set length of the C’s
path as length of the C2’s path (and vice versa if C2 is raked onto C1).

• Split and Destroy does nothing.

After that we could easily get length of the (u, v)-path by calling Expose(u, v)
and reading length from this cluster. Because operations in user functions are in
constant time and Expose takes O(log N) operations, we could answer on any
such question in O(log N) time.

3.2 Maximum edge weight between given ver-
tices with interval update

Similarly to the previous problem this problem was originally solved in [6] and
then it was adapted for Top Trees in [2].

Theorem: Let’s have dynamic collection of weighted trees with operation of
linking, cutting, updating edge weight and updating edge weights on given path.
We could find maximum edge weight between any two vertices (or find that they
are not connected) in O(log N) time.

Proof: We can maintain wmax in each cluster as maximum weight on this cluster’s
path and wextra as weight added to each edge on this path.

19

• Create creates cluster with wmax = w(e) where e is the edge for which is
this cluster created. There is no extra weight yet, so wextra = 0.

• Join of clusters C1 and C2 into C depends on the type of the C:

– If C is a compress cluster of C1 and C2: Set wmax as maximum of wmax

from clusters C1 and C2. There is no extra weight, so wextra = 0.
– If C is a rake cluster and C1 is raked onto C2: Copy wmax from the

C2. There is no extra weigh, so wextra = 0.

• Split have to distribute wextra to the children. For C1, C2, children of
splitted C will operations depend on the type of the C:

– If C is a compress cluster of C1 and C2:
◦ wextra(Ci) = wextra(Ci) + wextra(C) for i ∈ 1, 2
◦ wmax(Ci) = wmax(Ci) + wextra(C) for i ∈ 1, 2

– If C is a rake cluster and C1 is raked onto C2: Apply above operation
only for C2 (and vice versa only for C1 if C2 is raked onto C1).

• Destroy sets weight of the underlying edge: w(e) = wmax + wextra.

Then we could just call Expose(u, v) and read wmax or add both to wextra

and wmax of the root cluster representing the (u, v)-path. Everything in time
complexity of an Expose operation, which is O(log N).

3.3 Edge 2-connectivity
This is an example of more complex problem, where is the Top tree structure used
as only part of the whole algorithm. It was introduced by Holm, Lichtenberg and
Thorup in 2001 in [7]. A complete description of the problem is in the mentioned
article, there we will only recall some basic principles (most of this section is a
simplified citation from the [7]).
Theorem: Problem of 2-edge connectivity on dynamically updated graph with
N edges could be solved in amortized time O(log4 N) per one operation (addition
or deletion of an edge and test if given vertices are 2-edge connected).

3.3.1 Basic principle
We will maintain a spanning forest F of graph G and we will say, that tree edge
e is covered by nontree edge v, w if e ∈ v . . . w (if there is a tree path from v to w
and e is on this path).

Frederickson showed that two vertices x and y are 2-edge connected if and
only if they are connected in F and all edges in path x . . . y are covered.

So we will maintain a spanning forest F together with a set C of covering
edges for each non-bridge edge in F . Two vertices are 2-edge connected in G if
and only if they are 2-edge connected in F ∪ C.

During updates, when we will delete an edge from F we will need to find an
replacement in C. And for every deleted edge from C we may need to add several

20

replacement edges into C. By carefully choosing replacement edges we will be
able to amortize the time to meet O(log4 N) per operation.

3.3.2 Brief overview of details
We do not discuss all the details here, they are described in [7]. We only briefly
overview some basic principles to make the big picture. For details see the men-
tioned article.

Algorithm associates with every tree edge a nontree edge that covers it. When
we add u, v edge and u and v are already connected in the F we should add
u, v edge as cover edge for all tree edges on the u . . . v path. It would be slow
to directly update all the affected edges so we will distribute this information
with lazy updates through the top tree clusters – each cluster has its own cover
information which it distributes to its path children when the cluster is splitted.

Deletion of an uncovered tree edge is quite easy, we just Cut it from the
F . Otherwise we need to find some replacement edges for edges that stops to be
covered. To accomplish easy finding of replacement edges the algorithm associates
with every nontree edge a level (number < log N) – each nontree edge starts with
level 0 and levels may be only increased.

For each i we will define a graph Gi as graph induced by only edges of level
at least i together with the F . For each tree edge e ∈ F we will maintain a cover
level as maximal level of nontree edge covering it (thus maximal level i for which
e is in a 2-edge connected component of Gi). When some vertices are 2-edge
connected on level i they 2-edge connected on all levels ≤ i.

When updating the cover information after deleting some edge we use these
levels as guide for finding new cover edges. Major part of the time complexity of
the whole algorithm is the time needed for updating data structures with nontree
egdes incident to some vertex on some level. These data structures are used for
finding replacement edges. This part is described in detail in the [7].

3.3.3 Operations
User could control the algorithm with three simple operations:

• Inserting an u, v edge – When given vertices are not connected in the F
just connect them by Link, otherwise add a nontree edge and do cover on
the path cluster for path u . . . v.

• Deleting an u, v edge – When the u, v edge is a tree edge and it is
a bridge (not covered by any other edge) just Cut it. If it is covered tree
edge, swap it with its cover nontree edge and delete it like other nontree
edges. Nontree edge is deleted firstly by uncovering u . . . v path (removing
all cover informations that it may generate on the u . . . v path) and then
by recovering this path (because by uncovering we may remove too much
cover information).

• Query if u and v are 2-edge connected – This is an easy operation when
we just need to Expose u . . . v path and read the cover information from
the returned root cluster.

21

3.3.4 Speed up query by disabling expensive updates
This idea came from the original article [7] where they analyzed time complexity
and postpones some enhancements.

Covering and uncovering on graph with N edges takes O(log2 N) and therefore
one call to the Join takes O(log2 N) and Link, Cut and Expose operations
takes O(log3 N). Recover operations takes O(log3 N) for every increase of and
edge level by one and because edge level is increased at most O(log N) times, we
spent at most O(log4 N) time for each edge between its insertion and deletion.

The query in this original algorithm takes O(log3 N), but it could be speed
up if some conditions are met. During query we don’t need any updated incident
informations, we need only cover informations and these informations could be
joined in O(1) time.

If the top trees implementation could preserve the original shape of the clusters
and restore to this original form after Expose, we may turn off expensive updates
in the Join operation during the query and complete the query in O(log N) time.

This condition is met for the second implementation using topology trees, but
we cannot disable the updates in the first implementation, because the shape of
the top tree is different before and after the Expose and we would lost some
incident information.

3.4 Vertex 2-connectivity
Vertex 2-connectivity problem is only a more complicated version of an edge
2-connectivity problem discussed in the previous subsection.

Solution using top trees was introduced by Holm, Lichtenberg and Thorup
2001 in [7] and this solution works in time O(log5 N) per operation. For more
details see the mentioned article.

22

4. Implementation and usage
As has beeen mentioned in the Introduction both implementation are written
in C++. More precisely they are written in C++14 with frequent use of smart
pointers introduced in C++11 and enhanced in C++14, which helped a lot with
memory handling.

Source code of both implementations is attached to this thesis including Make-
file for easier compiling and testing. Source code is also published on Github,
which may be more pleasant way to explore it or use it in other projects:

https://github.com/setnicka/top-trees

4.1 Interface of the Top Trees structure
Both implementations share the same interface which makes them easily inter-
changeable.

Firstly user needs to include TopTreesInterface.hpp and define classes for
holding data in vertices and edges. These classes must inherit from generic classes
for edge and vertex data defined in the TopTree namespace.

Then user has to choose one implementation and init the Top Tree. After
that user could use Cut, Link and Expose methods to manipulate with the
structure.

4.1.1 User data structures
If user want to store data in edges and vertices he has to define classes that
inherits from default TopTree::EdgeData and TopTree::VertexData classes.

class MyEdgeData: public TopTree::EdgeData {
public:

int weight;
std::string label;
virtual std::ostream& ToString(std::ostream& o) const {

return o << label;
}

};

class MyVertexData: public TopTree::VertexData {
public:

std::string label;
virtual std::ostream& ToString(std::ostream& o) const {

return o << label;
}

};

Figure 4.1: Example of classes for edge and vertex data

23

https://github.com/setnicka/top-trees

When using DEBUG options (see below) classes for edges and vertices must
implement std::ostream& ToString(std::ostream&) method, it is used for
debug printing. How to enable debug printing will be showed later.

As second step user needs to define structure for cluster data. This structure
must inherit from generic structure TopTree::ClusterData. For initialization
of this structure user has to provide function TopTree::InitClusterdata and
function TopTree::CopyClusterData to do a deep copy of of given data to the
another cluster. Example of all definitions follows.

struct MyData: public TopTree::ClusterData {
public:

int max_weight;
};

std::shared_ptr<TopTree::ClusterData> TopTree::InitClusterData() {
return std::make_shared<MyData>();

}

void TopTree::CopyClusterData(
std::shared_ptr<ICluster> from,
std::shared_ptr<ICluster> to

) {
auto fromData = std::dynamic_pointer_cast<MyData>(from->data);
auto toData = std::dynamic_pointer_cast<MyData>(to->data);

toData->max_weight = fromData->max_weight;
}

Figure 4.2: Example of struct for holding cluster data

4.1.2 User functions
Necessary for operating with Top Trees are definitions of user functions. User
must define user functions in the TopTrees namespace, without these functions
the program cannot be even compiled.

Both Join and Split user functions takes shared pointers to three clusters
(generic interface TopTree::ICluster), two for child clusters and one for parent
cluster. Create and Destroy functions takes shared pointer to the created/de-
stroyed cluster and shared pointer to the underlying edge’s data (data is passed
as generic type TopTree::EdgeData and it have to be casted to the user’s data
class as previously defined).

24

void TopTree::Join(
std::shared_ptr<TopTree::ICluster> left,
std::shared_ptr<TopTree::ICluster> right,
std::shared_ptr<TopTree::ICluster> parent

) {
auto l = std::dynamic_pointer_cast<MyData>(left->data);
auto r = std::dynamic_pointer_cast<MyData>(right->data);
auto p = std::dynamic_pointer_cast<MyData>(parent->data);
p->max_weight = max(r->max_weight + l->max_weight);

}

void TopTree::Split(
std::shared_ptr<TopTree::ICluster> left,
std::shared_ptr<TopTree::ICluster> right,
std::shared_ptr<TopTree::ICluster> parent

) {} // Nothing to do, but we must define the function

void TopTree::Create(
std::shared_ptr<ICluster> cluster,
std::shared_ptr<EdgeData> edge

) {
auto data = std::dynamic_pointer_cast<MyData>(cluster->data);
auto edge_data = std::dynamic_pointer_cast<MyEdgeData>(edge);
data->w_max = edge_data->weight;

}

void TopTree::Destroy(
std::shared_ptr<ICluster> cluster,
std::shared_ptr<EdgeData> edge

) {} // Nothing to do, but we must define the function

Figure 4.3: Example of user functions

4.1.3 Choosing top tree implementation and initialization
Both top tree implementations share interface TopTree::ITopTree which defines
Expose, Cut, Link and Restore functions.

To use one of the implementations just initialize it:
// For Sleator-Tarjan self-adjusting trees implementation:
auto TT = new TopTree::STTopTree();

// For topology trees implementation:
auto TT = new TopTree::TopologyTopTree();

Top tree could be initialized from scratch or it could be initialized from some
underlying tree. For this underlying tree there exists TopTree::BaseTree class
with AddVertex, AddEdge and AddLeaf functions (last one is only shortcut for
AddVertex and AddEdge in one step).

25

To initialize from some underlying tree user could call InitFromBaseTree.

auto baseTree = std::make_shared<TopTree::BaseTree>();

auto a = baseTree->AddVertex(std::make_shared<MyVertexData>("a"));
auto b = baseTree->AddLeaf(a, std::make_shared<MyEdgeData>(15),

std::make_shared<MyVertexData>("b"));
auto c = baseTree->AddLeaf(a, std::make_shared<MyEdgeData>(3),

std::make_shared<MyVertexData>("c"));
auto d = baseTree->AddLeaf(b, std::make_shared<MyEdgeData>(7),

std::make_shared<MyVertexData>("d"));
auto e = baseTree->AddLeaf(b, std::make_shared<MyEdgeData>(4),

std::make_shared<MyVertexData>("e"));

auto TT = new TopTree::STTopTree();
TT->InitFromBaseTree(baseTree);

Figure 4.4: Example of initialization from underlying base tree

4.1.4 User methods
After initialization user could control the structure by Link, Cut and Expose
methods:

• Cut(v, w) – Cut edge between given vertices (given by integers returned
from AddVertex calls). It returns tuple with pointers on the root clusters
of both resulting top trees and pointer to the edge data from cutted edge.
When vertices are not connected by an edge (when not connected at all or
when connected by some longer path) it will return NULL.

• Link(v, w, edge data) – Link given vertices with a new edge with given
data. When vertices are already in the same tree it will return NULL (oth-
erwise it will return pointer on root cluster of resulting top tree).

• Expose(v, w) – Expose given v . . . w path and return pointer to the cluster
covering this path. When vertices are not connected it will return NULL.

• Restore() – Restore the structure into valid form (useful only for Topology
trees implementation when user wants to disable some expensive updates
during Expose).

4.2 Debug and Graphviz output
Both implementations have debug output which can be used to trace their pro-
cessing steps and optionally to output their current state in Graphviz format.
Debug messages goes on their error output (stderr) and Graphviz on their stan-
dard output (stdout).

26

Graphviz is open source program which is able to visualize several types of
graphs (tree structures included). As we mentioned above both implementations
are able to print Graphviz script at their standard output and this script could
be translated by Graphviz program to a PDF image.

Because of Graphviz problem with outputting multipage PDF at the time
of writing this thesis better approach is to translate them to PostScript and to
convert this PostScript to the PDF manually:

./top_trees > output.dot
dot -Tps2 output.dot -o output.ps
ps2ps output.ps output-fixed.ps
ps2pdf output-fixed.ps output.pdf

There is also Makefile rule so inside the project directory you can call only
make output.pdf to convert output.dot file.

[0] Full

Nb
z,a

t,b

LF

Nw
z,b

L

a,b

R

o,w

LF

Np
z,w

L

Nc
w,b

R

y,w

L

o,w

R

x,p

LF

p,z

L

w,p

R

c,k

LF

c,w

L

b,c

R

c,j

L

Nn
c,k

R

c,q

L

c,j

R

Nd
c,r

L

Ne
c,q

R

d,c

L

r,d

R

s,e

LF

e,c

L

q,e

R

f,c

L

Ng
c,j

R

h,g

LF

g,c

L

j,g

R

i,n

LF

n,c

L

k,n

R

Nv
n,u

L

i,n

R

l,v

LF

v,n

L

u,v

R

Figure 4.5: Example of Graphviz showing top tree from the first implementation

4.2.1 Enabling debug and Graphviz output
User only needs to uncomment lines at the top of .cpp files and compile the
program again. Possible options: #define DEBUG for debug output on stderr,
#define DEBUG GRAPHVIZ for graphviz output on stdout and #define WARNINGS
for warnings about incorrect usage like linking vertex to itself on stderr.

27

5. Implementation of Top Trees
using self adjusting trees
This implementation is based on article Self-Adjusting Top Trees [1] by Tarjan
and Werneck and uses the extended clusters model with foster children discussed
in the Chapter 1.

5.1 Construction
Tarjan and Werneck in [1] suggested this construction:

1. Choose root r as a vertex with degree one.

2. Orient all edges in the tree containing vertex r towards the vertex r.

3. Divide tree into paths starting in some leaf and continuing along the direc-
tion of the edges – the first path will end in the root r and became the root
path, other paths end up being connected to some existing path.

4. Recursively compute clusters to represent each path incident to the root
path and create rake trees from these incident paths.

5. Create binary tree of compress clusters to represent the root path and con-
nect rake trees as foster children.

6. If there are some unused vertices of degree one, start the process again from
any of these vertices to construct another top tree.

In the implementation we choose equivalent construction but in more recursive
manner. We started the same way by choosing the root r as vertex with degree
one, but we don’t divide the tree into paths.

Starting from the second vertex we choose one neighbor as continuation of the
path and recursively called the same function on all other neighbors. Recursion
returns clusters representing each of the subtrees and then they could be raked
into left and right rake trees and saved into this vertex for future use.

When compressing the path into compress clusters we just look into the com-
mon vertex of compressed clusters and if there are saved rake trees we connect
them as left and right foster children.

This construction is easier to implement and gives us ability to better control
the shape of the resulting top tree. By choosing neighbors instead of direct-
ing paths from leafs we could prefer longer paths by choosing neighbors with
deepest subtree (we firstly run DFS1 to obtain depths). Longer paths are better
contracted in binary tree structure of compress clusters to obtain lower top tree.

1Deep-first search – common known algorithm to search graph G = (V, E) in time O(|V | +
|E|)

28

5.2 Expose
Expose in this implementation is based on splaying and splicing which are used
to bring handles of given vertices to the top of theirs top trees.

Implementation of the Expose operation has two parts: soft and hard expose.
Soft expose is used internally by other operations, hard expose is used only in
the Expose itself.

Before moving forward we will recall some internal structure of top trees with
extended clusters model.

Compress and rake trees

Because of extended clusters model each top tree consist from independent com-
press trees (only compress clusters as internal nodes) and rake trees (only rake
clusters as internal nodes).

Whole top tree is one compress tree (which represents the root path). It has
base clusters as leafs and roots of rake trees as foster children (these foster children
are other paths connected to the root path). These rake trees have rake clusters
as theirs internal nodes and base or compress clusters as theirs leaf. And so on.

This division of the top tree into smaller blocks could be used to expose given
pair of vertices in the root of the top tree. We will use operations of splay and
splice introduced by Sleator and Tarjan in [8].

Split and Join operations

Before doing any operation that changes shape of a top tree, all nodes involved
in this operation must be splitted (including all their parents on the way to the
root of this tree). This is crucial because after changing shape of the top tree a
data stored in these nodes may be changed (for example depth of subtree bellow
this node).

Split operations have to be done in top-down manner (starting from the root).
The easiest way how to accomplish this is to have flag in each node if it is splitted
and recursively split parent before splitting current node. All splitted nodes
should be logged into some list to easily join all of them after completing current
operation.

Joining is done in opposite direction, in bottom-up manner (ending in the
root). We will assume that before doing anything with any node during splaying
and splicing operations we firstly split this node and after completing the entire
expose operation we will call join on all splitted nodes.

5.2.1 Splaying
Splaying is originally a heuristic for balancing binary trees which uses an idea
that often used nodes should be near the root of the tree. Each operation (find,
delete, . . .) on a vertex in splay tree is preceded by splaying this vertex which
moves this vertex to the root of the tree.

Splaying is done by rotations or double rotations (which are called zig-zig or

29

zig-zag rotations). That moves target vertex up by one or two levels preserving
all vertices in the right order.

Although some not so often used vertices may be in O(n) distance from the
root, Sleator and Tarjan in [8] proved that all operations work in amortized time
O(log n) per operation.

In the Top Trees structure we will use guarded splays that works exactly the
same way as normal splays, but it stops splaying when they reach a guard (some
node). Normal splay has as guard root of the whole tree, but we want to do
splays limited only inside compress or rake tree (not to mix compress and rake
clusters).

Implementation of the splay is straightforward. Only noticeable detail (which
Tarjan and Werneck mentioned in the [1]) is that foster children are not affected
by any rotations, they always keep the same parents.

5.2.2 Splicing
Only by splaying we are not able to expose a path containing both given vertices.
And we are not even able to carry compress clusters over rake trees (because rake
trees are connected as foster children under compress trees). For that we need to
change partitioning of the top tree into paths.

Lets take some vertex v which is internal to some path a . . . b (so there is
compress cluster around this vertex) and which has node representing path c . . . v
in its rake tree. We may change partitioning into paths by removing one half of
the original path (for example v . . . b), pushing cluster with this path into rake
tree, removing node representing path c . . . v from the rake tree and changing the
compress cluster that it will represent path a . . . c.

A

B C

a b

c

v

a[v]b

A a, v

B

v, c C

v, b

Splice

A

B C

a b

c

v

a[v]c

A v, b

C

a, v B v, c

Figure 5.1: Splice around vertex v and changing v . . . b for v . . . c (grayed clusters
are rake clusters).

30

Splicing is used after splaying and its task is to move cluster, which is leaf of
some rake tree, to the compress tree above it.

Tarjan and Werneck in the [1] only described the main idea in the general
case, but implementation details had to be worked out. In this work we decided
to do left splice (replacing left child of the compress cluster), but the procedure
would work the same way if we choose to replace the right child.

Our implementation does splicing in this way:

1. Prepare empty lists of left and right neighbors.

2. Starting from given node N go up until reaching node Nc in compress tree.
During that add left and right neighbors into neighbors lists and destroy
old internal nodes of these rake trees.

3. Add left child of the Nc to the appropriate list of neighbors and connect N
as the new left child of the Nc (that makes N part of the above compress
tree).

4. Construct new left and right foster children (rake trees) from left and right
neighbors lists respecting their order. New internal rake nodes have to be
constructed (and added into list of nodes for joining).

To assure that we do not broke connectivity of Nc with above clusters by
replacing left child we need to check children of the Nc. If the above cluster
(parent) is compress cluster, one of boundary vertices is common vertex of the
parent. And if the parent is rake cluster, one of boundary vertices is the vertex
around which is the parent raked. If this connection is in the left child we need
to flip children (otherwise child with the connection would be moved into rake
tree and connection would broke).

This detail was not discussed by Tarjan and Werneck – they only suggested
transforming top trees into some normalized form which would work for both
splaying and splicing. But they did not mention some corner cases where such
checking and flipping is needed.

5.2.3 Soft expose
Soft expose is the first part of the Expose operation. When it is called as
soft expose(u,v) its target is to bring path u . . . v as subpath into the root clus-
ter of corresponding top tree (so after soft expose there should be some path
a . . . u . . . v . . . b in the root cluster). Truncating the root cluster to contain only
u . . . v path is quest for the hard expose operation.

Soft expose takes handles of both vertices and brings them to the top of their
top trees. If both vertices are in different components (they are not connected
by a path) both the handles of u and v are brought to the roots of corresponding
top trees using series of local changes in the top trees (similarly if u = v).

When they are in the same component (they are connected by a path) firstly
the handle of u is brought to the root of corresponding top tree. If the current
root cluster is also handle of v we are done, otherwise the handle of v is brought
as close to the root as possible (but not replacing the handle of u as root).

31

Algorithm

Exact procedure for one vertex (as described by Tarjan and Werneck in [1]) is
following:

1. Local Splays – Starting from the handle of given vertex:

(a) Splay current node inside compress tree (that makes it root of that
compress tree)

(b) If reaching a root cluster (there is no parent) → stop the cycle.
(c) If parent of the current node is rake cluster → set this parent as current

node and splay it inside its rake tree.
(d) Take parent of the current node (compress cluster having current node

as foster child) and repeat the cycle.

2. Splices – Starting from the handle of given vertex splice current vertex,
move to its parent and repeat. This procedure moves in every step handle
of the given vertex across one rake tree to the above compress tree. Finally
it moves this handle into the root compress tree.

3. Global splay – Perform splay on the handle of given vertex (now in the
root compress tree) to make it root of this top tree.

Firstly we expose handle(u) using above procedure. After that we expose
handle(v) with handle(u) as the guard (to assure that it remains at the top). If
both vertices (and so both handles) are in different top trees both of them ends
as roots of theirs top trees – this situation is not interesting anymore, so we will
assume that they are in the same top tree.

Tarjan and Werneck discussed special situation when one of the vertices has
degree one (and its handle is not a compress cluster around this vertex), in this
case they realized that mentioned procedure leads to exposing handle of the
second vertex with first vertex as one of its endpoints.

Another special case, which they did not discussed, is situation when both
vertices have degree one – in that case before starting procedure for the second
vertex we have to ensure that the base cluster of the first vertex is not the left
child of root cluster (otherwise it would be moved to rake tree when splicing the
handle of the second vertex, what we do not want).

If handles for both vertices are the same there is nothing to do (both handles
are occupied by the root cluster). When they are different the second handle will
end as one of the first handle children. To make hard expose easier we will assume
that this is the right children (otherwise we just flip left and right children).

And where is path u . . . v located? There are three possibilities (notice that we
are still operating with extended clusters model, where rake trees are connected
as foster children – in standard top tree model there could be intermediate rake
clusters and the cluster with path u . . . v could be located deeper):

32

u[x]v

u, x x, v

Case 1

a[u]v

a, u u, v

Case 2

a[u]b

a, u u[v]b

v, b u, v

Case 3

Figure 5.2: Three possible cases where cluster with endpoints u, v could be located
after soft expose(u,v).

1. Root cluster itself – When both vertices have degree one, they are endpoints
of the root cluster and so their handles are represented in the root cluster.

2. Child of the root cluster – When one vertex has degree at least two its
handle is compress cluster. In that case the root cluster represents some
path a . . . u . . . v or u . . . v . . . b and desired path u . . . v is represented in its
child (assume that it is the right child, otherwise flip them).
Another case when path is in child of the root cluster is when u and v are
connected directly by an edge. In this case the path is represented by base
cluster and so it might be child of some compress cluster.

3. Grandchild of the root cluster – When both vertices have degree at least two,
both handles are represented by compress clusters. Child of the root cluster
is bounded from one side (by common vertex of the root compress cluster)
and it is again a compress cluster (the second handle). The grandchild of
the root cluster is bounded from by the second cluster and so it represents
our path (let again assume it is the right child, otherwise flip children).

To ensure that the root cluster represents only the path u . . . v we need the
hard expose operation.

5.2.4 Hard expose
Hard expose is the second part of the Expose operation, it follows the soft expose
and its job is to truncate the path in the root cluster that it contains only the
exposed subpath.

Ideal situation is when u and v are endpoints of the root cluster, it is possible
when both of them have degree one or when all other clusters incident to the root
cluster are raked onto the root cluster.

But in general root cluster could represent some path x . . . y with path u . . . v
as subpath. In this case we need to temporarily convert ends of this path (paths
x . . . u and v . . . y) into rake clusters so the compress tree would represent the
path u . . . v with these ends raked onto this path.

As we discussed at the end of the soft expose operation, wanted subpath
may be located in the root cluster itself, in its (right) child or in its (rightmost)
grandchild.

Tarjan and Werneck (in [1]) came with simple trick – temporarily convert
compress clusters above wanted cluster (at most two compress clusters as we

33

realized above) to rake clusters (rakerizing them). Because we are using left rake
clusters the resulting rake cluster will have the same boundaries as its right child
– this is the reason why we needed to have cluster with the wanted path on the
right side.

After rakerizing clusters (we have to not forget to split them before the op-
eration and join them after it) we have the u . . . v path represented in the root
cluster, expose procedure is finished.

But we brought the top tree in some corrupted form by rakerizing (at most
two) compress clusters. Prior the beginning of the next operation (Expose,
Link, Cut or Search) we have to undone this and return the top tree into its
original form, otherwise the amortization arguments would not work.

When rakerizing we save all rakerized compress clusters into some list and
before any other operation (Cut, Link or Expose) we call the Restore oper-
ation. The Restore operation checks this list and if there are some vertices it
changes them back to compress clusters. All that we could do in constant time
at start of every operation.

5.3 Cut
Implementing Cut operation is quite easy thanks to the soft expose operation.
First step of the Cut(u, v) operation is to do soft expose(u, v) which brings the
top tree into state described at the end of the soft expose subsection – depending
on the degrees of u and v the cluster representing (u, v) edge will be the rightmost
child or grandchild of the root cluster of the corresponding top tree.

a[u]b

A a, u B u[v]b

C v, b D u, v

Cut(u, v)

a[u]x

A a, u B′ u, x

b[v]y

C v, b D′ v, y

Figure 5.3: Example of cut. Cluster (u, x) is the rightmost cluster from B and
B′ is B without this cluster (cluster (v, y) and D′ in the same way).

We have to destroy the base node representing (u, v) and remove connection
between these two handles. After that we have to reorganize clusters to ensure
that all clusters have both children.

When one of the vertices have degree only one we are removing leaf edge and
there will be only one resulting top tree (or even no resulting top tree when both
vertices have degree only one and the whole top tree consists only from this edge).
Otherwise we have to split the top tree in the middle points of the two compress
clusters which we bring to the root by soft expose.

Starting from the root we detach the right child of the current cluster – but
we could not leave the cluster in this form, we need to find new right child.

34

If there are some nodes in left or right foster children (rake trees) we could
take one leaf from the rake tree (base or compress cluster) and make it the new
right child of the current cluster. When there is only one cluster in the rake tree
it is easy, but what to do if there are multiple clusters?

When taking cluster from the left rake tree we want to get the leftmost one
(or the rightmost one in the right rake tree) to maintain order. We splay on the
chosen clusters parent (which is rake cluster) to make it the root of this rake tree
– chosen cluster will be the left (right) child of this root and the rest of the rake
tree will be the second child. Now we can simply remove this root rake cluster,
use our chosen cluster as the right child and rest of the rake tree as the new left
(right) foster child.

The last case is when the current compress cluster have no foster children. In
that case we simply remove this compress cluster and replace it by its left child.

This whole procedure is done at most twice during the Cut operation (third
level is the u, v base cluster itself). It produces (two) new root clusters clusters
of the resulting top trees after cutting the u, v edge.

5.4 Link
Link is similar to the Cut operation but in the opposite way. First step during
the Link(u, v) operation is bringing both u and v to the top of corresponding
top trees. This could be simply done by calling soft expose(u, v).

Special case is when we are joining solitary vertices. In that case we simply
construct new base cluster and return it as the new top tree. Otherwise we
choose one vertex (and its handle) as the root of the final top tree, for easier
construction we choose the vertex with bigger degree. Then starting from the
second cluster (handle of the second vertex) we firstly move its right child into
one of its foster children (rake trees). If there is no rake tree it is simple, otherwise
we just construct new rake cluster connecting the existing rake tree as one of its
child and the former right child of the current compress cluster as the another.

a[u]x

A a, u B u, x

b[v]y

C v, b D v, y

Link(u, v)

a[u]b

A a, u B′ u[v]b

C v, b D′ u, v

Figure 5.4: Example of link. Subtree B′ is B with the (u, x) cluster connected as
its rightmost child. Subtree D′ and cluster (v, y) similarly.

After this move we simply connect the new u, v base cluster as right child and
we are done with this (lower) compress cluster. For the root compress cluster
we will do similar procedure with the only difference – instead of the u, v base
cluster we will connect modified compress cluster from the previous step as the
right child. This leads to constructing the final top tree.

35

6. Implementation of Top Trees
using Topology Trees
This implementation is based on the article Maintaining Information in Fully-
Dynamic Trees with Top Trees [2] by Alstrup, Holm, Lichtenberg and Thorup.
It builds Top trees structure on the base of topology trees introduced in the
Chapter 2. The update process of topology trees and some basic overview of
top clusters mapping was discussed in that chapter, there we will introduce some
details of joining, splitting and the Expose operation (Link and Cut operations
have been described in the mentioned chapter).

6.1 Mapping top trees clusters
Usage of Topology trees as backend for Top trees was described by Alstrup, Holm,
Lichtenberg and Thorup in [2]. They described the need of ternarization and how
to transform operations with the topology clusters to Split and Join functions
used in the Top trees structure.

Outgoing edges acts differently in topology clusters and top trees clusters –
in topology clusters outgoing edges are not parts of topology clusters, but top
trees clusters are based on these edges. Even that this is a major difference the
mapping could be done quite easily.

But before mapping we have to deal with fake subvertices and subvertice edges
added by ternarization.

a-f

a-c

e-f

a-b c-d

e-f

a b c

d

e f

a, f

a, e

a, c

a, c

a, b

b, c

c, d

c, e

e, f

Figure 6.1: Example of mapping topology tree clusters onto top clusters – on base
level there are three base clusters and on other levels there is always one topology
cluster which combines edge cluster with two clusters from lower levels.

36

6.1.1 Subvertices and subvertice edges from the Top trees
perspective

During ternarization in the Chapter 2 we added additional subvertices and sub-
vertice edges into the graph. That is needed by topology trees but it may be
problem for the top trees operations.

Firstly how to deal with subvertices: When performing top trees Join or
Split and joined cluster has subvertex as its endpoint, we use the superior vertex
of this endpoint instead of the original endpoint when passing endpoint to the
Join/Split user function. From the user’s points of view all subvertices are
represented by the original superior vertex.

And how to deal with subvertice edges? Just ignore them – there are no top
clusters associated with them. When joining topology cluster with subvertice
edge and two children, we just rake these children ignoring the edge.

6.1.2 Associated top clusters
With each topology cluster may be associated at most three top clusters:

• Edge cluster – when there is an normal edge inside the topology cluster.

• Combined edge cluster – joined edge cluster and cluster from the first child
(when the first child has its own top cluster).

• Top cluster for the whole topology cluster (joining combined edge cluster
and cluster from the second child if there is any).

x-y

a-y

a-z

a, x y, z

Figure 6.2: Combination of clusters a-x and y-z with edge xy: Firstly edge cluster
x-y is created, then it is combined with the first child cluster into a-y cluster and
finally this cluster is combined with the second child cluster into a-z cluster.

If topology cluster (or recursive its children) contains at least one normal edge
we call it topology top cluster (because it has associated top cluster). Otherwise
we will call it empty topology cluster . Originally all vertices of the original tree
are empty topology clusters and by joining them we create topology top clusters.

6.2 Joins and Splits
Join and Split (and Create and Destroy for base clusters) are user defined
functions that are called on top clusters with defined endpoints. We cannot

37

call them directly on topology clusters, so we need to split topology clusters to
associated top clusters and call user defined function on these top clusters.

The external view of the topology clusters during splitting and joining is
similar as in the first implementation – when operating on some topology cluster
we have to firstly ensure that this cluster and all of its parents are splitted.
Splitting is done recursively in the top-down manner and all splitted clusters
have to be joined after completing all operations in the bottom-up manner. This
is done by logging all splitted topology clusters into some list and joining all of
them after completing current operation.

6.2.1 Joining
We will recall that if the topology cluster C is not base cluster on the lowest level
it could have one or two children (mark them as C1 and C2). When joining the
C we have to do these operations:

1. If C has only one child → Just copy C1’s top cluster (with endpoints) into
the C’s top cluster and end.

2. If there is a normal edge between C1 and C2 → Create new edge cluster
from this edge (otherwise initialize dummy one).

3. If the C1 is a topology top cluster:

• If we created an edge cluster → Join C1’s top cluster with the edge
cluster into combined egde cluster (depending on C1’s shape set new
cluster’s endpoints as rake or compress cluster).

• Otherwise copy C1’s top cluster into combined edge cluster (with up-
dating endpoints).

Otherwise just copy edge cluster into combined edge cluster .

4. If the C2 is a topology top cluster:

• If there is valid combined edge cluster (if C1 is a topology top cluster
or there is a normal edge) → Join C2’s top cluster with the combined
edge cluster into C’s top cluster (depending on C2’s shape set new
cluster’s endpoints as rake or compress cluster).

• Otherwise copy C2’s top cluster into C’s top cluster .

Otherwise just copy combined edge cluster into C’s top cluster .

We have done at most two calls to the Join user function and one to the
Create user function.

6.2.2 Splitting
Split procedure is opposite to the join procedure. Endpoints of all top clusters
are correctly set by the join procedure so we have to only do Split and Destroy
operations in the opposite way.

38

If there is a normal edge in the topology cluster we firstly Split C’s top
cluster into combined edge cluster and C2’s top cluster and then Split combined
edge cluster into edge cluster and C1’s top cluster . Finally just Destroy the
edge cluster .

When there is a subvertice edge just Split C’s top cluster into children top
clusters. If some of the children is not a topology top cluster we just do copy
instead of Split (like in the join procedure).

We have done at most two calls to the Split user function and one to the
Create user function.

6.3 Expose
The mechanism of the Expose(u, v) is slightly tricky. Basic idea of the Expose
in the Top trees structure based on topology trees is to leave the topology trees
intact. We only need to split some topology clusters and then take their inner
top clusters and join them into a new structure.

This procedure was basically described by Alstrup et al. in [2] but without
any details. Here we describe it will all necessary details.

We split all topology clusters in the paths from both exposed vertices to the
root of corresponding topology tree, which gave us O(log N) top clusters splitted
around this path (because of the maximal height of a topology tree for N vertices).

Then we join all these top clusters to construct auxiliary top tree such that
the root cluster of this auxiliary top tree would be a compress cluster with two
given vertices as its endpoints (and all other clusters raked on its path).

After finishing Expose we serve the root cluster to the user and he could do
modifications on this root cluster. When it is over we split the auxiliary top tree,
which distributes information from the modified root cluster into splitted clusters
in the original topology tree. Finally we join all splitted clusters in the topology
tree and the operation is finished.

6.3.1 Splitting during expose
Firstly we start with recursive splitting from both given vertices – better said
from base topology clusters that contains these vertices. We need to split all
clusters that contain them but not as external vertices and to save these splitted
vertices into chain which we will join in the next step.

We have to make clear that boundary vertices (or endpoints) that we defined
for top trees may be different than external vertices. More precisely external
vertices are subset of boundary vertices. We defined that each top cluster has
two boundary vertices because we defined top clusters as generalized edges. But
external vertices are only those boundary vertices that are connected to other
clusters. Computation of external vertices may be done in O(1) from children’s
external vertices because number of outgoing edges for both children is limited.

With definition of external vertices the splitting part is straightforward – for
each cluster (starting from given vertex’s base cluster) we check that given vertex
is external vertex (by checking outgoing edges) and if no we split this cluster.

39

Notice that all clusters above the first splitted clusters will be splitted too,
because once the vertex stops be external it will never be external again. To have
the full coverage of the tree we have to add the last not splitted cluster to the
chain too (it will be the first cluster in the chain).

Splitted cluster is divided (by at most two call to the Split user function and
one to the Destroy user function) into at most two topology clusters (one from
which we climbed up and second as its sibling) and one edge.

If there is sibling cluster, this sibling has its top cluster and there is a normal
edge, we Create top cluster for this edge, Join this top cluster with sibling’s
top cluster (according to previous situation of both siblings we join them as rake
or compress cluster) and then we add them into chain of top clusters for the next
operation. If there is only edge or only sibling’s top cluster (when there is only a
subvertice edge) we just add it into chain directly without joining.

We only need to care not to add sibling that is on the second vertex’s path.
For the second vertex the only difference would be that we will stop this process
when we reach already splitted cluster (otherwise we would add some clusters
twice).

Example of splitted clusters

We will take topology tree from the figure 2.2 (page 14) and let us Expose(b,f).
We will start splitting clusters from base clusters containing these vertices as you
can see on the figure 6.3.

c-h

c-e2

c-b

c

c

a-b

a b

e1-e2

e1-d

e1 d

e2-f

e2 f

g-h

g-h

g-h

g h

Figure 6.3: Splitting from vertices b and f. Marked clusters will be added into
chain – notice that they cover all vertices of the underlying tree and with connect-
ing edges they cover all edges too.

Firstly we split all clusters above vertices b and f . Then starting from the
vertex b we continue up to the moment, when b stops be an external vertex – it
is in the cluster c-e2 where we add the previous cluster (c-b) into the chain. Also
we should add our sibling e1-e2, but this cluster is splitted (because it is on the
path from f to the root) so we add only the edge cluster b-e1.

Continuing above we add sibling cluster g-h combined with edge (so we will

40

push cluster e2-h into the chain) and that is all for the first vertex. For the second
vertex we continue up until reaching cluster e1-e2, where f stops be an external
vertex. We add previous cluster e2-f and sibling e1-d to the chain (notice that
we ignore subvertice edge because it is not a cluster). Above this cluster we hit
the path processed by the first run and thus we end.

Starting from both vertices we ended with two chains of clusters that have
to be joined together: [c-b; b-e1; e2-h] and [f -e2; e1-d]. Subvertices of the same
vertex acts from this point of view as the same vertex and therefore we may act
like all occurrences of the e1 or e2 are e (from this point we will not act with
topology tree structure and ternarization is not needed).

6.3.2 Chain joining
During splitting we saved splitted clusters along the paths from both given ver-
tices and we saved those splitted vertices into two chains. Now we need to join
them. In [2] Alstrup, Holm, Lichtenberg and Thorup suggested some joining
based on joining point clusters with arbitrary neighbors and then compressing all
remaining clusters on path.

After several tries we decided to do different approach. All clusters in chains
acts like generalized edges so we can build a tree from them and then run a DFS
(depth first search) on this tree.

Our DFS will return computed top cluster for given subtree and will have three
parameters: a current vertex, target vertex and parent cluster (cluster which was
used to move to the current vertex). Target vertex will guide joining of clusters so
that if subtree under current vertex contains target vertex, the returned cluster
will have target vertex as its endpoint.

When joining clusters during Expose(u, v) we call DFS with parameters
chainJoin(u, v, NULL).

For each vertex chainJoin(v, target, parent) will do:

• If there is no outgoing cluster (except the parent) return only the parent.

• For all outgoing clusters C (except the parent) with endpoints (v, x) recur-
sive call

childCluster = chainJoin(x, target, C)

• Rake join all child clusters into cluster. If there was a child cluster with
target endpoint, all clusters will be raked onto this cluster (otherwise rake
arbitrarily).

• If v is target, rake cluster onto parent and return this cluster. Otherwise
compress cluster with parent and return this cluster.

The last cluster is returned to the user. Because paths from both given vertices
to the root cluster has length at most O(log N) there were at most O(log N)
clusters. Thus the tree used for DFS run has O(log N) edges and there were at
most O(log N) calls to the Join user function.

Now the structure is in a degraded form and before any other operation it
must be restored.

41

6.3.3 Restore
Restore is called manually by the user or automatically by all others operations.
If the structure was modified by the Expose there is a topology tree in the
right shape, but with splitted clusters. And also there is an auxiliary top tree
which could contain modified information that should be distributed into original
clusters.

Firstly we need to Split all the clusters in the auxiliary top tree (there is
at most O(log N) clusters). Clusters on the last level of the auxiliary top tree
distribute information to the clusters in the original tree.

Now we can delete the auxiliary top tree and then join all the splitted clusters
in the original tree. Because the initial splitting takes O(log N) calls to the Split
user function the joining would take the same amount of calls to the Join user
function.

6.3.4 Keeping original clusters during Expose
Because the original shape of the underlying topology tree remains intact during
the Expose operation we may use it for our benefit. From the user’s point of
view we Split some clusters, then we build from them a new top tree and finally
we destroy this new top tree and Join again the same clusters as were before.

In some use cases there are a lot of informations in the clusters used for struc-
tural changes in the underlying clusters – for example in the 2-edge connectivity
that we will use as one of our experiments. In these cases it may be good to turn
off some expensive updates during Join/Split and to turn them on after the top
tree is returned into its original shape.

For this behavior we need to remember the original values somewhere. User
may do this on it’s own (for example by saving this information in edges), but
there is an better approach. Because our interface for all user functions pass them
pointers to the clusters (and the data is stored inside them) we may keep these
original clusters intact after the Split and then pass them to the Join (instead
of newly created empty clusters). We will use this functionality in our experiment
with the 2-edge connectivity.

42

7. Experiments
Comparison of both implementations is an important part of the whole thesis
and for objective results multiple tests were needed.

I choose two different problems mentioned in the chapter 3. First of them is
a problem of maximum edge weight between given vertices with interval updates
(described in section 3.2), which uses Top trees directly and aims to work in time
O(log N) per operation. Second problem is an edge 2-connectivity (described in
section 3.3), which uses Top trees “under the hood” and aims to work in time
O(log4 N) per operation. Both problems uses Top trees in different ways.

Another necessary condition of good comparison is to have various input data.
In our case of investigating Top trees behavior with given problems input data
consist of two things:

• Size and type of the underlying graph (number of edges, degrees of vertices)

• Strategy of data structure usage (portion of affected edges, proportion of
operation types, . . .)

7.1 Experiments strategy
Common scenario for all experiments was introduced. Each experiment was done
for both implementations with the same input data and with increasing input
size. Common scenario:

• Choose graph size (number of vertices and edges).

• For each chosen graph size choose multiple random seeds to generate initial
edges and sequence of operations.

• For each implementation and every generated input run the test and mea-
sure elapsed time.

• Compute average elapsed time and standard deviation for each input size.

Python wrapper was used to generate random seeds and to execute testing
utilities. Testing utilities written in C++ firstly generates all the input data and
sequence of operations, initializes data structures and then began to measure time
and execute the operations.

This procedure was chosen to minimize influence of test functions and to
measure only the time used by Top trees operations.

43

7.2 Maximum edge weight experiment
This problem was described in section 3.2 and it operates directly on the under-
lying tree.

For given size N of the tree and number of operations the initial tree with
N edges and N + 1 vertices was generated. After that the list of operations was
generated (every operation with the same chance) from following operations list:

• Add edge – Choose random two vertices and execute Link operation (when
we choose two vertices in the same top tree the Top trees structure should
return an error).

• Remove edge – If there are at least 7
10N edges choose random edge from

list of edges and execute Cut operation (we will maintain array of added
edges so every remove operation should be successful), otherwise skip this
operation.

• Add weight on path – Execute Expose operation and modify content of
the returned root cluster.

• Get weight on path – Execute Expose operation and read content of the
returned root cluster.

Every operation executes O(1) top trees operations and it should take time
O(log N), where N is a number of edges. Number of edges during execution was
maintained between N and 7

10N to maintain the same asymptotic complexity.
Both implementations were tested on the same input data. For each imple-

mentation the initial edges and list of operations were generated from the same
random seed. Then the implementation was initialized from the initial edges
and time of this initialization was measured. And finally all the operations were
executed and running time of all operations was measured.

Source code of the library for maximum edge weight is located in the header
file include/examples/maximum edge weight.hpp and source code of the exper-
iment itself is in the src/experiment edge weight.cpp file.

Results from this experiment follows in the section 8.1.

44

7.3 Edge 2-connectivity experiment
This problem was described in the section 3.3 and it uses top trees as helper data
structure for more complex operations.

Cover informations with incident edges are stored in top clusters and as a
supplement to the top trees structure it holds informations about all nontree
edges and some global counters.

7.3.1 Stored data
Information stored in each top cluster:

• Cover level of the cluster (maximal level on which is the cluster path cov-
ered), cover edge of this level.

• Cover informations to be distributed into children on splitting (lazy prop-
agation of cover and uncover operations).

• Arrays with incident information for both endpoints of this cluster, size of
these arrays is O(log2 N).

Outside of the top clusters there are structures associated to the each edge
(because edge may change from tree to nontree and vice versa we need to associate
this structure with each edge) which holds information about level of the edge
and if it is covered by other edges (like the cover information in top clusters).
Each edge have O(1) information associated with it.

And finally there are global incident counters for each vertex, they takes
O(log2 N) space.

Because there are a lot of other data structures outside of the top trees struc-
ture we cannot use the top trees structure initialization from underlying base
graph, but we must initialize the structure by inserting all the edges one by one.
During experiments the initialization time was measured independently.

7.3.2 Generating initial graph and choosing number of
edges

Important decision during generating graph was number of edges. For graph on
N vertices we could have up to O(N2) edges, but such graph wouldn’t be much
interesting for the question of edge 2-connectivity.

We want to have graphs which are not fully 2-connected, but whose have large
2-connected components. During testing graphs with sizes cN2, N

√
N , N log N

and cN were tested (where N is number of vertices and c some small constant)
and size 3N was chosen as an optimal size with the best ratio of positive and
negative queries (graphs with larger number of edges has more unbalanced ratio
of positive and negative queries).

Initial edges of the graph was generated uniformly randomly as pairs of ver-
tices. During experiment the number of edges of the underlying graph was kept
between 7

10N log N and 13
10N log N .

45

7.3.3 Test scenarios
Possible operations were described in the section 3.3. For measuring time two
scenarios were introduced. In the first one 70 % of operations were queries, 15 %
of them insertions and last 15 % were deletions. This experiment aims to simulate
some average structure usage with all operations.

Second scenario does only queries to properly measure difference between
normal variant of the second implementation and variant of the second imple-
mentation with disabled expensive updates during queries.

Source code of the library for maximum edge weight is located in the header
file include/examples/double edge connectivity.hpp and source code of the
experiment itself is in the src/experiment double edge connectivity.cpp file.

Results from this experiment follows in the section 8.2.

The problem of edge 2-connectivity and its solution is much larger problem
than the problem in the first experiment. I tried to implement it in the best
way but my aim was the comparison of the two top trees implementations, not
building universal solution for edge 2-connectivity.

The experiment still has some undefined behavior in some edge cases (for some
random seeds), but it had no effect on comparison – when some failure occurred
another random seed was chosen.

46

8. Results
Measured data for all experiment together with specification of computers used
for measure them is part of the attachment of this thesis. Here we will discuss
the results.

8.1 Maximum edge weight experiment results
Experiment described in section 7.2 was performed on both implementations and
construction time and execution time of operations were measured. Execution
time per one operation is showed in the following chart.

102 103 104 105 106 107

Number of edges

0.0002

0.0004

0.0006

0.0008

0.0010

0.0012

0.0014

T
im

e
p

er
1

op
er

at
io

n
(s

ec
)

Comparison of implementations (time per operation)

Self adjusting tress

Topology trees

Figure 8.1: Chart showing time per operation in the maximum edge weight ex-
periment

Results show that both implementations have the same asymptotic time com-
plexity but as have been expected implementation with topology trees have larger
multiplicative constant.

Despite expectations this multiplicative constant is relatively small – accord-
ing to measured data the implementation with topology trees for larger inputs
(more than 104 edges) is only 1.58 to 1.68 times slower than the implementation
which uses self adjusting trees.

47

Running time of construction

Initial construction time measured per one edge of the initial underlying tree is
showed in the following figure. It shows some anomaly for small number of edges
(see bigger standard deviation in the beginning) but from tree size of 104 edges
it stabilizes.

It shows that the implementation based on self adjusting trees could initialize
in approximately half time than the implementation based on topology trees,
which corresponds to time per operation in the previous chart.

102 103 104 105 106 107

Number of edges

0.000020

0.000025

0.000030

0.000035

0.000040

0.000045

0.000050

T
im

e
p

er
1

ed
ge

(s
ec

)

Comparison of implementations (construction time)

Self adjusting tress

Topology trees

Figure 8.2: Chart showing construction time per one edge in the maximum edge
weight experiment

48

8.2 Edge 2-connectivity experiment results
Similarly to the previous experiment the experiment described in the section 7.3
was performed on both implementations (on second with normal updates and
with expensive updates turned off during query). Construction time (time to
insert all initial edges) and execution time of all operations and execution time
on only query operations were measured.

Running time of all operations

Firstly we analyze the running time of normal operations. As you can see on the
following chart, there are some anomalies depending on size of the graph, but
mean curve of the measured times shows that all implementations have the same
asymptotic complexity (they should operate in O(log4 N)). The implementation
which uses self adjusting trees has the lowest multiplicative constant as have been
expected.

101 102 103 104

Number of edges

0.0

0.2

0.4

0.6

0.8

1.0

T
im

e
p

er
1

op
er

at
io

n
(s

ec
)

Comparison of implementations (time per operation)

Self adjusting tress

Topology trees

Topology trees (expensive updates off)

Figure 8.3: Chart showing time per any operation in the edge 2-connectivity ex-
periment

The implementation with topology trees is 2.2 to 3.5 times slower than the
implementation which uses self adjusting trees. This multiplicative constant is
larger than the same multiplicative constant in the first experiment.

Mark multiplicative constant from the experiment 8.1 as C. Expected value

49

for the multiplicative constant in this experiment would be approximately C3 (be-
cause operations in this experiment have asymptotic time complexity of O(log3 N)
or O(log4 N)), but measured multiplicative constant for this experiment is lower.
The difference against the expectation might be caused by processor caches –
updates in the edge 2-connectivity experiment operates on arrays in the clusters
in sequential order which causes less cache misses.

Another interesting observation is that turning of expensive updates during
queries have lowered the running time only about 30 % although the ratio of
queries was 70 % in all the experiments – so the majority of time is spent on the
insertions and deletions of edges.

Running time of only queries

In some uses it might be crucial to quickly answer on queries and other updates
may be slower. The second experiment executed only queries and measured their
running time.

101 102 103 104

Number of edges

10−4

10−3

10−2

10−1

T
im

e
p

er
1

op
er

at
io

n
(s

ec
,

lo
g

sc
al

e)

Comparison of implementations (time per operation, only queries)

Self adjusting tress

Topology trees

Topology trees (expensive updates off)

Figure 8.4: Chart showing time per query in the edge 2-connectivity experiment

As you can see on the above chart (it has logarithmic scale on the time axis)
the implementation where we could turn off expensive updates during query –
topology trees implementations – is the absolute winner. Time complexity of the
implementation without expensive updates is asymptotically lower than the time
complexity of any other implementation.

50

Running time of construction

Construction in this problem cannot be done in one step from some underlying
tree, but it must be done by sequentially inserting all the edges from the underly-
ing graph. Thus time of construction of graph with M edges is time of sequential
insertion of M edges into the empty structure.

101 102 103 104

Number of edges

0.00

0.05

0.10

0.15

0.20

T
im

e
p

er
1

ed
ge

(s
ec

)

Comparison of implementations (construction time)

Self adjusting tress

Topology trees

Figure 8.5: Chart showing construction time per one edge in the edge 2-
connectivity experiment

As you can see the construction time is similar and as have been expected the
implementation which uses topology trees is slower. According to measurement
it is 1.7 to 1.9 times slower than the construction of the implementation which
uses self adjusting trees.

Not so good result is that the construction time per one edge grows with
the graph size and from some size it starts to be unsuitable for real use. For
production use it would need some construction method like the maximum edge
weight problem.

51

Conclusion
There are two main products of this thesis: Implementations of Top trees struc-
ture and results of experiments.

Both implementations were written from scratch in C++ and they are pub-
licly available for any usage – as part of this thesis or as repository on Github
(mentioned in the chapter 4). They both shares the same generic interface, which
allows to easily interchange them, so each user of them can choose the one which
better fits to his needs.

Also some other works may build upon this codebase and expand it (code is
shared under public licence). Both implementations were written with efficiency
in mind, but there are still places, where they could be tweaked for even better
performance. I will be pleased if there will be active users of this piece of code.

Second product of this thesis are results of experiments discussed in the last
chapter. They showed that in most cases the implementation which uses self ad-
justing trees is better due to larger multiplicative constant of the implementation
with topology trees.

Only when Join or Split functions are time consuming and some updates
could be turned of during Expose operation the second implementation could
be considered as interesting.

The experiment with edge 2-connectivity showed, that when Expose opera-
tions are significant but not the only part of all operations, the implementation
with topology trees is still slower than implementation with self adjusting trees.
But if we want to ensure quick Expose operations or number of Expose oper-
ations is asymptotically larger than number of other operations, we may use the
second implementation with topology trees and with expensive updates turned off
during Expose. In these circumstances it could works much quicker for Expose
operation.

These results may help users of provided implementations to choose the right
implementation to fit their needs. Also other researchers in the field of Top Trees
may build upon these results.

And finally, important result of this thesis is a new knowledge which I earned
during working on it. It was an interesting journey through this complex data
structure, it teach me a lot of things about dynamic data structures. I hope, that
readers of this thesis would be at least half as much pleased as I am.

52

Bibliography
[1] Robert E. Tarjan and Renato F. Werneck. Self-adjusting Top Trees. In

Proceedings of the Sixteenth Annual ACM-SIAM Symposium on Discrete Al-
gorithms, pages 813–822, Philadelphia, PA, USA, 2005. Society for Industrial
and Applied Mathematics.

[2] Stephen Alstrup, Jacob Holm, Kristian de Lichtenberg, and Mikkel Thorup.
Maintaining Information in Fully-Dynamic Trees with Top Trees.
Computing Research Repository, cs.DS/0310065, 2003.

[3] Greg N. Frederickson. A Data Structure for Dynamically Maintaining
Rooted Trees. 24(1):37–65, 1997.

[4] Stephen Alstrup, Jacob Holm, Kristian de Lichtenberg, and Mikkel Thorup.
Minimizing Diameters of Dynamic Trees. In Proceedings of the 24th
International Colloquium on Automata, Languages and Programming, ICALP
’97, pages 270–280, London, UK, UK, 1997. Springer-Verlag.

[5] Martin Mareš. Dynamické grafové algoritmy. Master’s thesis, Charles
University in Prague, Prague, 2000.

[6] Daniel D. Sleator and Robert Endre Tarjan. A Data Structure for Dy-
namic Trees. J. Comput. Syst. Sci., 26(3):362–391, June 1983.

[7] Jacob Holm, Kristian de Lichtenberg, and Mikkel Thorup. Poly-logarithmic
Deterministic Fully-dynamic Algorithms for Connectivity, Mini-
mum Spanning Tree, 2-edge, and Biconnectivity. J. ACM, 48(4):723–
760, July 2001.

[8] Daniel D. Sleator and Robert Endre Tarjan. Self-adjusting Binary Search
Trees. Journal of the ACM, 32(3):652–686, 1985.

53

List of Figures

1.1 Left and right rake clusters . 6
1.2 Compress cluster . 6
1.3 Original tree and corresponding top tree 7
1.4 Rake trees around a path . 8
1.5 Original tree and corresponding top tree with extended clusters

model . 8

2.1 All 8 types of valid topology clusters 13
2.2 Example of the topology tree construction 14
2.3 Resulting topology tree from the previous construction. 14

4.1 Example of classes for edge and vertex data 23
4.2 Example of struct for holding cluster data 24
4.3 Example of user functions . 25
4.4 Example of initialization from underlying base tree 26
4.5 Example of Graphviz showing top tree from the first implementation 27

5.1 Splice around vertex v . 30
5.2 Three possible cases where cluster with endpoints u, v could be

located after soft expose(u,v). 33
5.3 Example of cut . 34
5.4 Example of link . 35

6.1 Example of mapping topology tree clusters onto top clusters . . . 36
6.2 Associated top clusters with topology cluster 37
6.3 Splitting clusters into chains . 40

8.1 Chart showing time per operation in the maximum edge weight
experiment . 47

8.2 Chart showing construction time per one edge in the maximum
edge weight experiment . 48

8.3 Chart showing time per any operation in the edge 2-connectivity
experiment . 49

8.4 Chart showing time per query in the edge 2-connectivity experiment 50
8.5 Chart of construction time per edge in the edge 2-connectivity

experiment . 51

54

Attachments
Attachment 1: Source code of the two implementations (including experimental
data and generators)

Attachment 2: Measured data from experiments and generated charts

55

	Introduction
	Top Trees
	Definition
	Clusters
	Clusters model
	Extended clusters model

	User defined functions
	Create
	Destroy
	Join
	Split
	Choose

	Top Trees operations
	Expose
	Restore
	Cut
	Link
	Search

	Topology Trees
	User interaction
	Definition and properties
	Topology clusters and clusterization
	Topology tree
	Height of a topology tree

	Updates – internal cuts and links
	Update process

	Ternarization of a tree
	Ternarization during Cut operation
	Ternarization during Link operation

	Examples of problems and user functions
	Finding distance between two vertices
	Maximum edge weight between given vertices with interval update
	Edge 2-connectivity
	Basic principle
	Brief overview of details
	Operations
	Speed up query by disabling expensive updates

	Vertex 2-connectivity

	Implementation and usage
	Interface of the Top Trees structure
	User data structures
	User functions
	Choosing top tree implementation and initialization
	User methods

	Debug and Graphviz output
	Enabling debug and Graphviz output

	Implementation of Top Trees using self adjusting trees
	Construction
	Expose
	Splaying
	Splicing
	Soft expose
	Hard expose

	Cut
	Link

	Implementation of Top Trees using Topology Trees
	Mapping top trees clusters
	Subvertices and subvertice edges from the Top trees perspective
	Associated top clusters

	Joins and Splits
	Joining
	Splitting

	Expose
	Splitting during expose
	Chain joining
	Restore
	Keeping original clusters during Expose

	Experiments
	Experiments strategy
	Maximum edge weight experiment
	Edge 2-connectivity experiment
	Stored data
	Generating initial graph and choosing number of edges
	Test scenarios

	Results
	Maximum edge weight experiment results
	Edge 2-connectivity experiment results

	Conclusion
	Bibliography
	List of Figures
	Attachments

